Home IOS Games APK Videos Tools
Sleek: > Fresh > toán 10 cánh diều trang 77

toán 10 cánh diều trang 77 purple

Forward : payment

Planner : 1.9.2

monitor : 2023-09-01 09:53:22

Shoes : crossly

toán 10 cánh diều trang 77 thành phố Phổ Yên

Trò chơi-Cho phép trải nghiệm nhập vai đỉnh cao,áncánhdiề hạnh phúc không chỉ là những con số

Trong những năm gần đây, ngành công nghiệp trò chơi bùng nổ và nhiều loại trò chơi lần lượt xuất hiện. Là một trong những viên ngọc sáng, trò chơi đang dần được người chơi ưa chuộng. Nó đã thu hút một lượng lớn người chơi với lối chơi độc đáo, đồ họa tinh tế và nội dung trò chơi phong phú. Hôm nay, hãy cùng nhau thưởng thức và trải nghiệm niềm vui bất tận mà trò chơi này mang lại nhé!

toán 10 cánh diều trang 77Giải SGK Toán 11 trang 77 Cánh Diều tập 1

Bài 1 trang 77 SGK Toán 11 tập 1 – Cánh DiềuDùng định nghĩa xét tính liên tục của hàm số (fleft( xight) = 2{x^3} + x + 1) tại điểm (x = 2.)Phương pháp:Hàm số (y = fleft( xight)) được gọi là liên tục toán 10 cánh diều trang 77 tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Lời giải:Hàm số (fleft( xight) = 2{x^3} + x + 1) xác định trên (mathbb{R}).Ta có: (begin{array}{l}mathop {lim}limits_{x o 2} fleft( xight) = mathop {lim}limits_{x o 2} left( {2{x^3} + x + 1}ight) = {2.2^3} + 2 + 1 = 17\fleft( 2ight) = {2.2^3} + 2 + 1 = 17\ Rightarrow mathop {lim}limits_{x o 2} fleft( xight) = fleft( 2ight)end{array})Do đó hàm số liên tục tại x = 2.Bài 2 trang 77 SGK Toán 11 tập 1 – Cánh DiềuTrong các hàm số có đồ thị ở Hình 15a, 15b, 15c, hàm số nào liên tục trên tập xác định của hàm số đó? Giải thích.Phương pháp:– Các hàm đa thức liên tục trên (mathbb{R})– Các hàm phân thức hữu tỉ liên tục trên từng khoảng xác định của chúng– Hàm số (y = fleft( xight)) được gọi là liên tục tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( toán 10 cánh diều trang 77 xight) = fleft( {{x_0}}ight))Lời giải:Bài 3 trang 77 SGK Toán 11 tập 1 – Cánh DiềuBạn Nam cho rằng: “Nếu hàm số (y = fleft( xight)) liên tục tại điểm ({x_0},) còn hàm số (y = gleft( xight)) không liên tục tại ({x_0},) thì hàm số (y = fleft( xight) + gleft( xight)) không liên tục tại ({x_0})”. Theo em, ý kiến của bạn Nam đúng hay sai? Giải thích.Phương pháp:Hàm số (y = fleft( xight)) được gọi là liên tục tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Lời giải:Theo em ý kiến của bạn Nam là đúng.Ta có: Hàm số (y = fleft( xight)) liên tục tại điểm ({x_0}) nên (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Hàm số (y = gleft( xight)) không liên tục tại ({x_0}) nên (mathop {lim}limits_{x o {x_0}} gleft( xight)e gleft( {{x_0}}ight))Do đó (mathop {lim}limits_{x o {x_0}} left[ {fleft( xight) + gleft( xight)}ight] = mathop {lim}limits_{x o {x_0}} fleft( xight) + mathop {lim}limits_{x o {x_0}} gleft( xight)e fleft( {{x_0}}ight) + gleft( {{x_0}}ight))……

toán 10 cánh diều trang 77Giải bài tập Bài 2. Giải tam giác (C4 – Toán 10 Cánh diều)

Phương pháp giải Hướng dẫn giải a) Áp dụng định lí cosin trong tam giác ABC ta có:(A{B^2} = A{C^2} + B{C^2} – 2.AC.BC.cos C)(begin{array}{l} Leftrightarrow A{B^2} = {15^2} + {12^2} – 2.15.12.cos {120^o}\ Leftrightarrow A{B^2} = 549\ Leftrightarrow AB approx 23,43end{array})b) Áp dụng định lí sin trong tam giác ABC, ta có:(frac{{BC}}{{sin A}} = frac{{AB}}{{sin C}})( Rightarrow sin A = frac{{BC}}{{AB}}.sin C = frac{{12}}{{23,43}}.sin {120^o} approx 0,44)( Rightarrow widehat A approx {26^o}) hoặc (widehat A approx {154^o}) (Loại)Khi đó: (widehat B = {180^o} – ({26^o} + {120^o}) = {34^o})c)Diện tích tam giác ABC là: (S = frac{1}{2}CA.CB.sin C = frac{1}{2}.15.12.sin {120^o} = 45sqrt 3 ) Phương pháp giải Hướng dẫn giải Áp dụng định lí sin trong tam giác ABC ta có:(frac{{AB}}{{sin C}} = frac{{BC}}{{sin A}})( Rightarrow sin C = sin A.frac{{AB}}{{BC}} = sin {120^o}.frac{5}{7} = frac{{5sqrt 3}}{{14}})( Rightarrow widehat C approx 38,{2^o}) hoặc (widehat C approx 141,{8^o}) (Loại)Ta có: (widehat A = {120^o},widehat C = 38,{2^o})( Rightarrow widehat B = {180^o} – left( {{{120}^o} + 38,{2^o}}ight) = 21,{8^o})Áp dụng định lí cosin trong tam giác ABC ta có:(begin{array}{l}A{C^2} = A{B^2} + B{C^2} – 2.AB.BC.cos B\ Leftrightarrow A{C^2} = {5^2} + {7^2} – 2.5.7.cos 21,{8^o}\ Rightarrow A{C^2} approx 9\ Rightarrow AC = 3end{array})Vậy độ dài cạnh AC là 3. Phương pháp giải Hướng dẫn giải toán 10 cánh diều trang 77a)Ta có: (widehat A = {180^o} – (widehat B + widehat C)) ( Rightarrow widehat A = {180^o} – ({100^o} + {45^o}) = {35^o})Áp dụng định lí sin trong tam giác ABC ta có:(frac{{AB}}{{sin C}} = frac{{AC}}{{sin B}} = frac{{BC}}{{sin A}})( Rightarrow left{ begin{array}{l}AC = sin B.frac{{AB}}{{sin C}}\BC = sin A.frac{{AB}}{{sin C}}end{array}ight.)( Leftrightarrow left{ begin{array}{l}AC = sin {100^o}.frac{{100}}{{sin {{45}^o}}} approx 139,3\BC = sin {35^o}.frac{{100}}{{sin {{45}^o}}} approx 81,1end{array}ight.)b)Diện tích tam giác ABC là: (S = frac{1}{2}.BC.AC.sin C = frac{1}{2}.81,1.139,3.sin {45^o} approx 3994,2.) Phương pháp giải Hướng dẫn giải a) Áp dụng định lí cosin trong tam giác ABC, ta có: (cos A ……

toán 10 cánh diều trang 77Giải SBT Toán 10 trang 105, 106 Cánh Diều tập 1

Bài 57 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC. Giá trị của biểu thức (overrightarrow {BA} .overrightarrow {CA} ) bằng:A. AB. AC. cos(widehat {BAC})   B. – AB. AC. cos(widehat {BAC})            C. AB. AC. cos(widehat {ABC})   D. AB. AC. cos(widehat {ACB})Lời giải:Ta có: (overrightarrow {BA} .overrightarrow {CA}  = left( { – overrightarrow {AB} }ight).left( { – overrightarrow {AC} }ight) = overrightarrow {AB} .overrightarrow {AC}  = AB.AC.cos widehat {BAC})Chọn ABài 58 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC. Giá trị của biểu thức (overrightarrow {AB} .overrightarrow {BC} ) bằng:A. AB. BC. cos(widehat {ABC})   B. AB. AC. cos(widehat {ABC})               C. – AB. BC. cos(widehat {ABC})D. AB. BC. cos(widehat {BAC})Phương toán 10 cánh diều trang 77 pháp:Biến đổi (overrightarrow {AB} ) và (overrightarrow {BC} ) thành 2 vectơ chung gốc rồi sử dụng định nghĩa tích vô hướng của hai vectơLời giải:Đáp án đúng là ABài 59 trang 105 SBT Toán 10 – Cánh DiềuCho đoạn thẳng AB. Tập hợp các điểm M nằm trong mặt phẳng thoả mãn (overrightarrow {MA} .overrightarrow {MB}  = 0)là:A. Đường tròn tâm A bán kính AB                B. Đường tròn tâm B bán kính AB                C. Đường trung trực của đoạn thẳng AB       D. Đường tròn đường kính ABPhương pháp:Sử dụng tính chất (overrightarrow a .overrightarrow b  = 0 Leftrightarrow left( {overrightarrow a ,overrightarrow b}ight) = {90^0}) để tìm vị trí điểm MLời giải:Đáp án đúng là DBài 60 trang 105 SBT Toán 10 – Cánh DiềuNếu hai điểm M, N thoả mãn (overrightarrow {MN} .overrightarrow {NM}  =  – 9) thì:A. MN = 9                  B. MN = 3                  C. MN = 81                D. MN = 6Lời giải:Theo giả thiết, (overrightarrow {MN} .overrightarrow {NM}  =  – 9 Leftrightarrow overrightarrow {MN} .overrightarrow {MN}  = 9 Leftrightarrow {left( {overrightarrow {MN} }ight)^2} = 9 Leftrightarrow M{N^2} = 9 Leftrightarrow MN = 3) Chọn BBài 61 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC đều cạnh a. Các điểm M, N lần lượt thuộc các tia BC và CA thoả mãn (BM = frac{1}{3}BC,CN = frac{5}{4}CA). Tính:a) (overrightarrow {AB} .overrightarrow {AC}……

male

North

matrix

  • su789 thành phố Hội AnTrò chơi : Tận hưởng bữa tiệc của thế giới trò chơiLà một trò chơi rất được mo

    details
  • yêu một kẻ ngốc chap 88 thành phố Cà Mau Nội dung trò chơi, trải nghiệm giải trí đỉnh cao! Với sự ph

    details
  • z2 5c thành phố Hải PhòngTrong xã hội hiện đại, game đã trở thành một phần không thể thiếu trong cuộ

    details
  • xoso66 win sòng bạc thành phố Tam Kỳ Câu chuyện trò chơi: Xem lại các tác phẩm kinh điển và tận hưởn

    details
  • z bet casino thành phố Phúc YênGiới thiệu trò chơi 444: khơi dậy niềm đam mê chơi game của bạn! Bạn

    details
  • yonex 88 dial 3 thành phố Bắc Giang Giới thiệu trò chơi: Chơi niềm vui vô tận của một thế giới giả t

    details

crimp

  • h88 bet h88 bet thành phố Phan Thiết Mini Games: Thiên đường tuổi thơ, thỏa sức vui chơi không giới hạn! Tuổ 2025-10-02 19:17

    details
  • yonex 88 dial yonex 88 dial thành phố Việt Trì Trò chơi trên web: Khám phá thế giới trò chơi vui nhộn bất tậnVới s 2025-10-02 19:10

    details
  • xoilac 88 tv xoilac 88 tv thành phố Đà Lạt"Tiết lộ bí ẩn của trò chơi : Phân tích toàn diện về lối chơi, chiến lư 2025-10-02 18:48

    details
  • zing pubg zing pubg thành phố Sầm Sơn Mini game: niềm vui bất tận của cuộc phiêu lưu đầy đam mê! Các bạn hãy đ 2025-10-02 17:44

    details
  • zv99 casino zv99 casino thành phố Cam Ranh Trò chơi di động - bữa tiệc chơi game hấp dẫnTrò chơi di động, với tư 2025-10-02 17:41

    details
  • xs9988 casino xs9988 casino thành phố Kon Tum Games: Đắm chìm trong niềm vui chơi game bất tậnTrong cuộc sống hối 2025-10-02 17:07

    details
optimize
X
  • *pascal:
  • West:
  • Drives:
    gray,why、alliance。
model
+100k
+50k
+120k
+1M
+75k
?